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LETTER TO THE EDITOR

Upper bounds for the reaction front in d-dimensional
turbulent flow

Sergei Fedotov
Department of Mathematical Physics, Ural State University, Yekaterinburg, 620083, Russia

Received 23 May 1996

Abstract. We develop an asymptotic method that yields analytic results for the upper bounds
for the ensemble averaged reaction front position and speed in ad-dimensionalhigh Reynolds
number turbulent flow. The chemical reaction is assumed to be of Kolmogorov–Petrovskii–
Piskunov type and the velocity is an incompressible Gaussian random field. In addition to the
general formalism, some examples are worked out in detail.

The study of the propagation of the reaction front in a random environment is of importance
in a variety of problems in physics and chemistry [1–8]. The most widely studied quantity
in such problems is the average rate at which the reaction front propagates throughout the
random medium. In recent papers [6, 7] we considered the problem of the propagation of
the chemical front by using the Kolmogorov–Petrovskii–Piskunov equation with the random
convection term involving simple shear flow with a power energy spectrum and infrared
divergence (see also [3, 4, 8]). In particular, we found that the propagation rate is very
sensitive to the detailed structure of random flow. Hence it is desirable to extend these
results by considering a more realistic model for the random velocity field and develop the
general formalism for obtaining the propagation rate in the long-time, large-distance limit.

In this letter we shall present a new approach to the calculation of an upper bound for
the ensemble averaged reaction front position and speed for general dimensionality. The
main mathematical tool is a functional integral technique based on stochastic differential
equations [9–10].

The problem of reaction front propagation can be formulated in terms of the modified
Kolmogorov–Petrovskii–Piskunov (KPP) equation for a dimensionless scalar fieldϕ(t, x)

[3, 4, 6, 7]:

∂ϕ

∂t
+ v(t, x) · ∇ϕ = D∇2ϕ + c(εx,ϕ)ϕ x ∈ Rd (1)

where the nonlinear termc(ϕ)ϕ describing the reaction rate is assumed to be of
Kolmogorov–Petrovskii–Piskunov type, i.e.

c(εx,0) = max
ϕ∈[0,1]

c(εx, ϕ) > 0 c(εx, 1) = 0 (2)

and the random velocityv(t, x) is a Gaussian solenoidal field with zero mean and correlation
tensor

〈vi(t, x)vj (τ, y)〉 = Bij (t − τ ; x, y). (3)
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Here and in what follows the angular brackets〈·〉 denote ensemble averaging over the
velocity statistics. The space and time variables are measured in units of the dissipation
length and time scales [6, 7].

The initial condition is

ϕ(0, x) = ϕ0(εx) (4)

where the initial distributionϕ0(εx) is assumed to be a positive, bounded function that
varies on the integral scale of turbulence and has the support

� = {
x ∈ Rd : ϕ0 > 0

}
.

It is also assumed that the support� does not coincide withRd .
The initial value problem, equations (1)–(4), involves a small parameterε = Re−3/4,

the ratio of the Kolmogorov length scaleη to the integral length scalel0; Re is a Reynolds
number. This small parameter allows us to separate the problems of determining the speed
of wave and its shape (for further discussion on the small parameterε see [6–12]).

It is well known [9, 10] that for the conventional KPP problem without a convection term
the scaling proceduret → t/ε, x → x/ε yields the large-scale geometric front propagation
with a velocity of the order of unity asε → 0. It is tempting to suppose that there exists a
scaling functionλ(ε) for which the ensemble average〈ϕ(t/3, x/ε)〉 develops the reaction
front. Even though we cannot determine such ensemble average (the KPP equation (1)
is nonlinear!) it is possible to find the upper bound for the ensemble averaged reaction
front position and speed in the long-time, large-distance limit. Thus in this letter we are
concerned with the behaviour of the set in which the ensemble average〈ϕ(t/λ, x/ε)〉 → 0
in the limit Re → ∞ , that isε → 0.

To find the ensemble averaged upper bound position

SG = { x ∈ Rd : G(t, x) = 0 }
we have to determine the effective functionG(t, x) [6, 7]:

G(t, x) = lim
ε→0

λ(ε) ln

〈
ϕ∗
(

t

λ(ε)
,
x

ε

)〉
x /∈ �. (5)

Hereϕ∗ is a solution of (1)–(4) whenc(εx, ϕ) is replaced by its maximum valuec(εx, 0).
It follows from equation (5) and the inequalityϕ < ϕ∗ that

lim
ε→0

〈
ϕ

(
t

λ(ε)
,
x

ε

)〉
= 0 if G(t, x) < 0. (6)

To find an explicit expression for the rescaled functionϕ∗(t/, x/ε
)

we use a functional
integral technique from [9, 10].

By using the scaling transformation

t → t

λ(ε)
x → x

ε
(7)

we can find the equation forϕ∗(t/λ, x/ε
)
:

∂ϕ∗

∂t
+ ε

λ
v

(
t

λ
,
x

ε

)
∇ϕ∗ = ε2D

λ
∇2ϕ∗ + 1

λ
c(x, 0)ϕ∗ (8)

with the initial condition

ϕ∗
(

0,
x

ε

)
= ϕ0(x). (9)
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Applying the Feynman–Kac formula [9, 10] we find the solutionϕ∗ of the Cauchy
problem (8), (9):

ϕ∗
(

t

λ
,
x

ε

)
= Exϕ0(x(t)) exp

{
1

λ

∫ t

0
c(x(s), 0) ds

}
(10)

whereEx denotes the expectation over the trajectoriesx(t) that can be found from

x(t) = x − ε

λ

∫ t

0
v

(
t − s

λ
,
x(s)

ε

)
ds +

(
2ε2D

λ

)1/2

W(t). (11)

HereW(t) is the standardd-dimensional Wiener process.
The solution (10) can be rewritten in an explicit form as a functional integral

ϕ∗
(

t

λ
,
x

ε

)
=
∫

ϕ0(x(t)) exp

{
1

λ

∫ t

0
c(x(s), 0) ds

}
P [x(s)] Dx(s) (12)

where the probability density functionalP [x(s)] for the random processx(s) is

P [x(s)] = J exp

{
− λ

4ε2D

∫ t

0

(
dx

ds
+ ε

λ
v

(
t − s

λ
,
x(s)

ε

))2

ds

}
(13)

and the integration is performed over all trajectories starting fromx(0) = x at s = 0, while
a suitable normalization constant is included in the definition ofDx(s). Since the velocity
v is assumed to be solenoidal, the JacobianJ = exp(α

∫ t

0 ∇ · v ds) is equal to unity. Note
that equation (12) with (13) is valid for any fixed realization of the random velocity fieldv.

We next derive an ensemble average ofϕ∗ appearing in equation (5). It is convenient
to rewrite the path-integral (12) in terms of an auxiliary vectoru(s) as follows [5, 13, 14]:

ϕ∗
(

t

λ
,
x

ε

)
=
∫ ∫

ϕ0(x(t)) exp

{
1

λ

∫ t

0

(
c(x(s), 0) − u(s)

dx

ds
+ ε2D

λ2
u2(s)

− ε

λ
u(s)v

(
t − s

λ
,
x(s)

ε

))
ds

}
Dx(s) D

(
iu(s)

λ

)
. (14)

From the well known formula for the Gaussian variableξ with zero mean〈expaξ〉 =
exp

{
1
2a2〈ξ2〉}, we find that〈

ϕ∗
(

t

λ
,
x

ε

)〉
=
∫ ∫

ϕ0(x(t)) exp

{
−1

λ

∫ t

0
u

dx

ds
ds

+1

λ
Hε [x(s), u(s)]

}
Dx(s) D

(
iu(s)

λ

)
(15)

where the Hamiltonian functionalHε is

Hε [x(s), u(s)] =
∫ t

0

(
c(x(s), 0) + ε2D

λ2
u2

)
ds

+ ε2

2λ3

∫ t

0

∫ t

0

d∑
i,j

Bij

(
s1 − s2

λ
; x(s1)

ε
,
x(s2)

ε

)
ui(s1)uj (s2) ds1 ds2. (16)

These formulae, together with equation (5), allow us to find the effective function
G(t, x) and thereby the upper bound for the reaction front positionSG = { x ∈ Rd :
G(t, x) = 0 }.
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The asymptotic expression for
〈
ϕ∗(t/λ, x/ε)

〉
in the limit ε → 0 can be written as

follows: 〈
ϕ∗
(

t

λ
,
x

ε

)〉
∼ exp

{
G(t, x)

λ

}
(17)

where

G(t, x) = sup

{
−
∫ t

0
u

dx

ds
ds + H 0 : x(0) = x, x(t) ∈ ∂�, x(s) /∈ � for s ∈ [0, t)

}
(18)

provided that

H 0 = lim
ε→0

Hε

has a non-trivial limit.
It is clear that the functionsx∗(s) andu∗(s) that maximize the functional in (18) can

be found from the Hamilton variational equations

dx∗

ds
= δH 0

δu∗
du∗

ds
= −δH 0

δx∗ . (19)

Thus the entire problem of finding the upper bound position for large scale front has
been reduced to maximizing the functional− ∫ t

0 u(dx/ds) ds +H 0. However, the solutions
of such variational problem cannot be found for arbitrary forms of the functionsc(x, 0) and
Bij (t − τ, x, y). Nevetherless there are situations when this problem can be solved exactly
for specific forms ofc andBij .

To demonstrate the ease of application of equations (16), (18) we consider a particularly
simple example: a homogeneous Gaussian random field with many spatial scales and rapid
oscillations in time:

〈vi(t, x)vj (τ, y)〉 = Bij (t − τ ; x, y) = Fε
ij (x − y)δ(t − τ). (20)

It follows from (16) that the Hamiltonian functionalHε can be written as

Hε =
∫ t

0

(
c(x(s), 0) + ε2D

λ2
u2 + ε2

2λ2

d∑
i,j

F ε
ij (0)ui(s)uj (s)

)
ds (21)

where the correlation tensorF ε
ij (0) has the following asymptotic properties:

Fε
ij (0) =

{
Mijε

−σ 0 < σ < 2

Nij σ < 0
ε → 0.

Hereσ is a measure of the infrared divergence [7].
Consider the case in whichc(x(s), 0) = c = constant, then

H 0 = ct +
∫ t

0
h0 ds h0 = 1

2

d∑
i,j=1

Kijui(s)uj (s)

Kij =
{

Mij λ(ε) = ε(2−σ)/2

2Dδij + Nij λ(ε) = ε .

(22)

To proceed further, we need an expression for the Legendre transformation ofh0, that
is the Lagrangian function

l0 = sup
u

[
u · dx

ds
− h0 (u)

]
= 1

2

d∑
i,j=1

Kij dxi

ds

dxj

ds
(23)



Letter to the Editor L521

whereKij = (
Kij

)−1
.

It follows from equations (18), (22) and (23) that

G(t, x) = ct − inf

{
1

2

∫ t

0

d∑
i,j=1

Kij dxi

ds

dxj

ds
ds :

x(0) = x, x(t) ∈ ∂�, x(s) /∈ � for s ∈ [0, t)

}
.

If we denote byρ the Riemann metric inRd corresponding the metric tensorgij = Kij ,

[9, 10] then

G(t, x) = ct − ρ2 (x, �)

2t

where the infimum is given by the minimal geodesics connecting the pointx and the
support�. Thus the upper bound for the front position is determined by

ρ (x,�) = t (2c)
1
2

while the upper bound for the velocity is given by

u =
(

2c

d∑
i,j=1

Kij eiej

) 1
2

wheree is the unit vector in the Euclidean metric inRd .
In summary, this letter is a first step in the analysis of the KPP equation with a

d-dimensional random velocity field with infrared divergence. It extends our previously
reported works on turbulent shear flow [6, 7] (see also [8]) and contains a novel use of
the functional integral technique in determining the upper bound for the ensemble averaged
reaction front position and speed. The most likely future extension of this work is to
investigate the influence of random velocity with Kolmogorov–Obukhov statistics [7, 15]
on the propagation of the reaction front.

The author gratefully acknowledges the financial support provided for this research by EC
Project INTAS-94-2580.
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