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LETTER TO THE EDITOR

Upper bounds for the reaction front in d-dimensional
turbulent flow

Sergei Fedotov
Department of Mathematical Physics, Ural State University, Yekaterinburg, 620083, Russia

Received 23 May 1996

Abstract. We develop an asymptotic method that yields analytic results for the upper bounds
for the ensemble averaged reaction front position and speediidimensionalhigh Reynolds
number turbulent flow. The chemical reaction is assumed to be of Kolmogorov—Petrovskii—
Piskunov type and the velocity is an incompressible Gaussian random field. In addition to the
general formalism, some examples are worked out in detail.

The study of the propagation of the reaction front in a random environment is of importance
in a variety of problems in physics and chemistry [1-8]. The most widely studied quantity
in such problems is the average rate at which the reaction front propagates throughout the
random medium. In recent papers [6, 7] we considered the problem of the propagation of
the chemical front by using the Kolmogorov—Petrovskii—Piskunov equation with the random
convection term involving simple shear flow with a power energy spectrum and infrared
divergence (see also [3, 4, 8]). In particular, we found that the propagation rate is very
sensitive to the detailed structure of random flow. Hence it is desirable to extend these
results by considering a more realistic model for the random velocity field and develop the
general formalism for obtaining the propagation rate in the long-time, large-distance limit.

In this letter we shall present a new approach to the calculation of an upper bound for
the ensemble averaged reaction front position and speed for general dimensionality. The
main mathematical tool is a functional integral technique based on stochastic differential
equations [9-10].

The problem of reaction front propagation can be formulated in terms of the modified
Kolmogorov—Petrovskii—Piskunov (KPP) equation for a dimensionless scalargfiele:)
[3,4,6, 7]

dp

ot
where the nonlinear ternt(¢)e describing the reaction rate is assumed to be of
Kolmogorov—Petrovskii—Piskunov type, i.e.

+v(t, x) - Vo = DV?p + c(ex, @)@ x eR? Q)

c(ex,0) = max c(ex, ¢) >0 clex,1) =0 (2)
¢€[0.1]

and the random velocity(z, x) is a Gaussian solenoidal field with zero mean and correlation
tensor

(vi(t, ©)vj (7, 9)) = Bj;(t — 75 ¢, y). (3
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Here and in what follows the angular brackdts denote ensemble averaging over the
velocity statistics. The space and time variables are measured in units of the dissipation
length and time scales [6, 7].

The initial condition is

¢(0, ) = go(ex) 4)

where the initial distributionpg(ex) is assumed to be a positive, bounded function that
varies on the integral scale of turbulence and has the support

Q={zxeR:¢y>0}.

It is also assumed that the supp&rtdoes not coincide witfR?.

The initial value problem, equations (1)—(4), involves a small parameterRe /4,
the ratio of the Kolmogorov length scateto the integral length scalg; Re is a Reynolds
number. This small parameter allows us to separate the problems of determining the speed
of wave and its shape (for further discussion on the small pararaetee [6-12]).

It is well known [9, 10] that for the conventional KPP problem without a convection term
the scaling procedure— r/e, x — x/¢ yields the large-scale geometric front propagation
with a velocity of the order of unity as — 0. It is tempting to suppose that there exists a
scaling functioni (¢) for which the ensemble average(t/A, x/¢)) develops the reaction
front. Even though we cannot determine such ensemble average (the KPP equation (1)
is nonlinear!) it is possible to find the upper bound for the ensemble averaged reaction
front position and speed in the long-time, large-distance limit. Thus in this letter we are
concerned with the behaviour of the set in which the ensemble avépage., x/¢)) — 0
in the limit Re — oo , that ise — 0.

To find the ensemble averaged upper bound position

S¢={xeR!: G(t,x)=0}
we have to determine the effective functictiz, ) [6, 7]:
G(t, ) = lim A(e) |n<(p* (t, m)> T ¢ Q. (5)
€—0 Ae) €
Here* is a solution of (1)—(4) whea(ex, ¢) is replaced by its maximum valugex, 0).
It follows from equation (5) and the inequality < ¢* that

. t T .
1ILT10<(,0 ()»(6)’ 6)> =0 if G(t,z) <O. (6)

To find an explicit expression for the rescaled functwr@t/, :c/e) we use a functional
integral technique from [9, 10].

By using the scaling transformation
t
-2 )

t—> —— x
A(e) €

we can find the equation far*(1/A, x/¢):

ot A A A
with the initial condition

0" (0.%) = @ (©)

do* t 2p 1
LA ( f) Vo' = S0V 4 ~c(@, 0" ®)
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Applying the Feynman—Kac formula [9, 10] we find the solutigh of the Cauchy
problem (8), (9):

At T 1/
9" 5 ¢ ) = Eepo(@®) exp */ c(z(s), 0) ds (10)
€ A 0
whereE, denotes the expectation over the trajectonig¢s that can be found from
_ e " [t—s x(s) 2¢2p\ Y2
w(t)—m—k/(‘)v< . ,6> ds+< 5 ) W(). (11)

HereW(z) is the standard-dimensional Wiener process.

The solution (10) can be rewritten in an explicit form as a functional integral
t x 1/
v (1:2) = [memen|; [ w06} reeives 02
0

where the probability density function®[x(s)] for the random process(s) is

t _ 2
P[m(s)]:Jexp{—‘l:;D/O (‘ieriv(tks,””is))) ds} (13)

and the integration is performed over all trajectories starting fg0) = « ats = 0, while

a suitable normalization constant is included in the definitio®af(s). Since the velocity

v is assumed to be solenoidal, the Jacoblaa exp(« fot V - vds) is equal to unity. Note

that equation (12) with (13) is valid for any fixed realization of the random velocity field
We next derive an ensemble averagepdfappearing in equation (5). It is convenient

to rewrite the path-integral (12) in terms of an auxiliary veaigs) as follows [5, 13, 14]:

HfF T 1/ 0 dz €°D ,
@ (A’e) —// wo(x(?)) eXp{X/() (C@(S), )—U(S)g-i-?u (s)

_;u(s)'u(t ; S, wis))) ds} Dx(s) D(iu)fs)). (14)

From the well known formula for the Gaussian variablevith zero meanexpa¢) =
exp{2a%(£%)}, we find that

1 TN\ 1/ dz
<§0 (A’e)> —//‘PO(CC(I))GXD{—)\/(; U ds

—i—%He[w(s), u(s)]} Da(s) D (iuk(s)> (15)

where the Hamiltonian functiondf¢ is

t 2
He[x(s), u(s)] = / (c(:v(s), 0) + 6?112) ds
0 A

e (g s1— 52 x(s1) x(s2)
+2}\3/0/0;B,~_,~< e . )ui(S1)Mj(52) dsy dso. (16)

These formulae, together with equation (5), allow us to find the effective function
G(t, ) and thereby the upper bound for the reaction front posiign= { z € R?
G(t,z)=0]}.
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The asymptotic expression fdg*(t/A, x/€)) in the limit e — 0 can be written as

follows:
t x G(t,x)
Ll ~ 17
o (o 2)) el 5 @)
where
t
G(t,x) = sup{—/ u((}l:Ta: ds+ H%: x(0)==x, @) € I, x(s) ¢ Qfors € [0, t)}
0 A)
(18)
provided that
H® = IimOHe

has a non-trivial limit.
It is clear that the functiong*(s) andu*(s) that maximize the functional in (18) can
be found from the Hamilton variational equations
* 0 * 0
dx _ SH du _ _SH . (19)
ds Su* ds Sx*
Thus the entire problem of finding the upper bound position for large scale front has
been reduced to maximizing the functionayé u(dx/ds) ds + H°. However, the solutions
of such variational problem cannot be found for arbitrary forms of the functiGns0) and
B;j(t — 7, z,y). Nevetherless there are situations when this problem can be solved exactly
for specific forms ofc and B;;.
To demonstrate the ease of application of equations (16), (18) we consider a particularly
simple example: a homogeneous Gaussian random field with many spatial scales and rapid
oscillations in time:

(vi(t, )i (T, y)) = Bij(t — ;@ y) = F;(x — )8t — 7). (20)
It follows from (16) that the Hamiltonian functionadf < can be written as

t 2
H¢ =/ c(x(s),0) + —u + — (O)u,-(s)uj(s) ds (21)
0 212
where the correlation tensdis; (0) has the following asymptotic properties:
M;je™° O<o <2
Fij.(O) = e — 0.
Nij <0

Hereo is a measure of the infrared divergence [7].
Consider the case in whial(x(s), 0) = ¢ = constant, then

t 1 d
H® = ¢t —I—/O h° ds h = 2 Z Kijui(s)u;j(s)
i,j=1
' (22)
Mij )\.(6) 26(2_0)/2

Y 2ps;+ N e =e.

To proceed further, we need an expression for the Legendre transformatidn tht
is the Lagrangian function

d . .
! Z i B A (23)

da 0
Sup[u ?_h (u )i| é ds ds
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whereK'i = (K;;) .
It follows from equations (18), (22) and (23) that

dx; dx;

G(t,x) =ct — mf{ /ZK”d dJ
A) A}

xz(0) =x, x(t) € 0, x(s) ¢ Qfors € [0, t)}.

If we denote byp the Riemann metric iR? corresponding the metric tensghi' = K%/
[9, 10] then

p? (x, Q)

2t
where the infimum is given by the minimal geodesics connecting the poiahd the
support2. Thus the upper bound for the front position is determined by

p(2.Q) = 1(20)?
while the upper bound for the velocity is given by

d
U= (202 Ki-fe[ej>
ij=1

wheree is the unit vector in the Euclidean metric RY.

In summary, this letter is a first step in the analysis of the KPP equation with a
d-dimensional random velocity field with infrared divergence. It extends our previously
reported works on turbulent shear flow [6, 7] (see also [8]) and contains a novel use of
the functional integral technique in determining the upper bound for the ensemble averaged
reaction front position and speed. The most likely future extension of this work is to
investigate the influence of random velocity with Kolmogorov—Obukhov statistics [7, 15]
on the propagation of the reaction front.

G(t,x) =ct —

1
2
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